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We calculate the electron self-energy as well as the quasiparticle spectral function in doped graphene, taking
into account electron-electron interaction in the leading order dynamically screened Coulomb coupling and
electron-impurity interaction associated with quenched disorder. Our theory provides the basis for calculating
all one-electron properties of extrinsic graphene. Comparison with existing angle-resolved photoemission
spectroscopy measurements shows broad qualitative and semiquantitative agreement between theory and ex-
periment, for both the momentum-distribution and energy-distribution curves in the measured spectra.
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The great deal of current activity1 in two-dimensional
�2D� graphene arises from its possible technological signifi-
cance as a new 2D electronic material where carrier density
can be controlled by an external gate voltage, and from its
fundamental significance as a novel 2D zero-band-gap semi-
conductor system with chiral linear Dirac-like electron-hole
band energy dispersion. In particular, the chiral linear energy
dispersion with the conduction and the valence band crossing
at the “Dirac point” has naturally led to an interesting anal-
ogy with QED, whereas the gate-induced tunability of
graphene carrier density brings up a tantalizing analogy with
Si metal-oxide-semiconductor field-effect transistors
MOSFETs. An important question in this context is the
extent to which the Coulomb interaction between carriers
will modify or renormalize the chiral linear electron-hole
band dispersion in graphene. Study of the many-body renor-
malization of single-particle properties due to electron-
electron interactions is one of the most important topics in
modern solid state physics.2

In this Rapid Communication we theoretically consider
carrier interaction effects in extrinsic graphene by calculating
the many-body self-energy, the quasiparticle spectral func-
tion, and the renormalized momentum distribution function
of graphene in the presence of free carriers �i.e., for doped or
gated graphene where carriers fill the 2D band up to the
Fermi level EF�. Our results show that, as already argued in
the literature,3 although the quantitative renormalization ef-
fects of interactions on the graphene single-particle proper-
ties are substantial, extrinsic graphene remains an effective
2D Fermi liquid “metal,” qualitatively preserving its nonin-
teracting chiral linear band dispersion even in the presence of
mutual Coulomb interaction. More importantly, our theoret-
ical calculation of the interacting spectral function enables an
excellent understanding of the recent experimental angle-
resolved photoemission spectroscopy �ARPES� data which
obtained the graphene spectral function.4,5

The quasiparticle spectral function A�k ,�� is a central
quantity in the many-body physics of interacting systems,
with A�k ,���−2 Im G�k ,�� where G�k ,�� is the
single-particle �retarded� Green function for momentum
k and energy � �we use �=1 throughout this paper�. For
the noninteracting bare system, we immediately get
A0�k ,��=2����−�sk+EF� where �sk=s�k with k��k� is the

bare graphene linear band dispersion with s= 	1 denoting
the conduction �+1� and the valence �−1� band, and
��106 cm /s the band velocity. We will assume that the sys-
tem is n doped with electrons filling the graphene conduction
band up to a free carrier density �n� dependent chemical
potential or Fermi level given by EF=�kF, where the Fermi
momentum kF= ��n�1/2. We have taken into account the spin
and the valley degeneracy of graphene in obtaining the Fermi
momentum. The noninteracting spectral function A0�k ,��
being a � function signifies that the band electron at momen-
tum k has all its spectral weight precisely at the energy
�k=�k, i.e., the noninteracting particle exists entirely at the
energy �k for a given momentum k. In the presence of in-
teraction effects, the many-body self-energy function

�k ,�� modifies the single-particle Green function,
G−1�k ,��=G0

−1�k ,��−
�k ,��, and the corresponding inter-
acting or renormalized spectral function is given by

A�k,�� �
2 Im 
�k,��

�� − �k − Re 
�k,���2 + �Im 
�k,���2 , �1�

where 
�k ,��=Re 
�k ,��+ i Im 
�k ,�� is complex, and
�sk��sk−EF. In general, A�k ,�� could be a complicated
function of k and �, and there is no guarantee that it will
have a �-function peak defining a quasiparticle. We note that
��d� /2��A�k ,��=1 is a sum rule, guaranteeing that the
electron at momentum k exists in the whole energy space,
but it may exist completely incoherently spread out over the
whole � space without any coherent structure �i.e., a � func-
tion at k=kF�, indicating a complete failure of the Fermi
liquid picture. Thus, the Fermi liquid theory applies only
when the renormalized spectral function A�k=kF ,�� at the
Fermi momentum has a �-function peak, i.e., A�kF ,�� can be
written as A�kF ,��=2�Z��w−�

k
*�+Ain���, where Z is the

so-called renormalization factor, �
k
* denotes the renormailzed

quasiparticle energy �measured from the chemical potential�,
and Ain is the incoherent background spectral function. If
A�kF ,�� does not have any �-function peak at all, then the
system is a non-Fermi liquid.

In Fig. 1 we show our calculated interacting quasiparticle
spectral function for extrinsic graphene at a fixed carrier den-
sity n=1012 cm−2. The calculations are carried out at T=0,
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but thermal effects are unimportant here since T /TF�1 even
at room temperatures. The following salient features of
graphene quasiparticle spectral function are notable in Fig. 1.
�1� There is a well-defined �-function quasiparticle peak at
kF with a rather substantial spectral weight of Z�0.85, indi-
cating that 15% of the bare spectral weight goes into inco-
herent background. �2� The quasiparticle spectral function
for k�kF shows, in general, broadened peak structures indi-
cating damped quasiparticles. �3� The generic broadened
double-peak structure at k�kF indicates that, away from the
Fermi surface, the renormalized graphene spectra would
have two distinct energies—the second peak, which has been
well studied in the literature in both 2D �Ref. 6� and 3D
�Ref. 7� interacting electron systems, is often referred to as
the “plasmaron” peak, indicating a coupled electron-plasmon
composite excitation. �4� All spectral functions for k�kF
have finite width corresponding to quasiparticle damping de-
fined by the imaginary part of the many-body self-energy,

Im 
�k ,��. Note that in Figs. 1�d� and 1�e� disorder contrib-
utes to combining the double-peak structure into a very
broadened single peak.

Since Fig. 1 giving the interacting graphene quasiparticle
spectral function is the central result being presented in this
paper, we first discuss the importance and the implications of
our calculated spectral function before describing the details
of our theory and other results. First, extrinsic �i.e., gated or
doped� graphene is a Fermi liquid with a well-defined un-
damped quasiparticle at kF. Thus, the chiral Dirac-like linear
dispersion of graphene band structure does not lead to any
anomalous non-Fermi-liquid behavior. Second, extrinsic
graphene has well-defined, but damped, quasiparticle peaks
for all momenta. One direct experimental probe of the qua-
siparticle spectral function is tunneling spectroscopy, which
has been studied extensively in GaAs-based 2D systems,8 but
has not yet been studied in graphene. The measurement that
comes closest to studying A�k ,�� in graphene is ARPES.4,5

Unfortunately, there are problems in directly comparing our
theoretical spectral function of Fig. 1 with the experimental
ARPES results. One problem is that electron-phonon
interaction-induced many-body renormalization9 also con-
tributes to the graphene spectral function. In Figs. 1�d� and
1�e�, we show the theoretical results corresponding to the
experimental ARPES spectra—in particular, Figs. 1�d� and
1�e�, respectively, correspond to the so-called momentum
distribution curves �MDCs� and energy distribution curves
�EDCs� of ARPES data. Since the actual theoretical spectral
function Fig. 1 has very strong momentum �k� and energy
��� dependence, a direct comparison with ARPES data will
necessarily involve detailed instrumental issues involving
resolution, the �k ,�� regime of averaging, and instrumental
errors, which are all well beyond the scope of the current
theoretical work. A cursory comparison between our results
and the experimental ARPES data4,5 shows reasonable quali-
tative agreement, but short of large-scale data fitting, one
cannot make definitive quantitative statements. One impor-
tant point to note here is that the plasmaron structure �i.e.,
the additional peak� does not really show up in the MDC and
EDC spectra, since they carry small spectral weight com-
pared with the main quasiparticle peak, particularly in the
energy regime near EF, as observed experimentally.4 Note
that the inclusion of disorder in the theory is essential in
getting agreement with the measured spectra since the two-
peak structure found in Figs. 1�a� and 1�c� without disorder
is not experimentally observed.

We now describe the theory leading to our calculation of
the interacting quasiparticle spectral function depicted in Fig.
1. The self-energy 
�k ,�� defining the spectral function
through Eq. �1� is given, in the leading order dynamically
screened Coulomb interaction approximation6,7


s�k,i�n� = − kBT	
s�

	
q,i�n

G0,s��k + q,i�n + i�n�



Vc�q�

��q,i�n�
Fss��k,k + q� , �2�

where Vc�q�=2�e2 /�q is the 2D Coulomb interaction with
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FIG. 1. �Color online� Calculated graphene spectral function for
different wave vectors k= �a� 0, �b� kF, and �c� 1.5kF without any
disorder effects. �d� Spectral function as a function of wave vector
for different energies �MDC� and �e� as a function of energy for
different wave vectors �EDC�. In �d� and �e� we include an impurity
scattering rate of 0.5EF as explained in Fig. 3�b�. We show only the
spectral features above the Dirac point. Here all energies are mea-
sured from the Fermi level, and the Dirac point is at �=−EF.
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the background lattice dielectric constant �, Fss��k ,k��
= �1+ss� cos �kk�� /2 is a sublattice overlap matrix element
arising from the graphene band structure, and ��q ,��
=1+Vc�q���q ,�� is the dynamical random-phase approxi-
mation �RPA� dielectric function for graphene with the
irreducible electron-hole polarizability ��q ,��, which has
recently been calculated.10 After the standard procedure of
analytical continuation, the self-energy can be separated
into the exchange and correlation parts, 
s�k ,��
=
s

ex�k�+
s
cor�k ,��.6,7 Since 
s

ex�k� has earlier been dis-
cussed in detail,11 we concentrate on the correlation part of
the self-energy, 
s

cor. We note that the irreducible self-energy
approximation used in our theory corresponds to keeping the
Coulomb interaction and the infinite series of electron-hole
bubble diagrams in the self-energy calculation.

An important technical point in the calculation of the self-
energy in graphene is that two distinct types of field-
theoretical divergence appear in the theory: infrared �small
momentum� and ultraviolet �large momentum�.3 The infrared
divergence arises from the 1 /q long-range divergence of the
Coulomb interaction, and is regularized by our RPA theory
through screening.6,7 The ultraviolet divergence in the
graphene self-energy, which arises from the peculiar
graphene band dispersion, is fixed by realizing that the linear
Dirac dispersion of graphene applies only up to momenta of
the order of the inverse lattice constant, and therefore all
momentum integrals should have an upper cutoff kc
1 /a,
where a is the graphene lattice constant.

In Fig. 2 we show our calculated graphene self-energy for
n=1012 cm−2 at k=1.5kF. We note that the peak in Im 
 cor-
relates with the dip in Re 
, and most of the spectral weight

resides near the dip of Re 
 �or equivalently at the peak of
Im 
�. We emphasize that, as is apparent from the detailed
spectral function in Fig. 1, the various structures in the self-
energy lead to specific features in A�k ,��—in particular,
Re 
 and Im 
 control, respectively, the energy renormaliza-
tion and the broadening �or damping� of the quasiparticle. An
important issue in this context is the precise contribution of
the collective plasmon mode to Im 
, which we have evalu-
ated explicitly as shown in Fig. 2�c�. Only far away from the
Fermi surface are the plasmon contributions strong, giving
rise to the strong plasmaron peak in the spectral function.

In Fig. 3 we show our calculated renormalized
quasiparticle momentum distribution function n�k�
=�−�

EF�d� /2��A�k ,�� for extrinsic graphene and disorder ef-
fects on the spectral function. The effect of electron-electron
interaction on n�k� is rather obvious in Fig. 3�a�. We note
that the interacting momentum distribution function has a
discontinuity of relative size Z at k=kF, clearly establishing
the Fermi liquid behavior of extrinsic �i.e., doped or gated�
graphene. The discontinuity increases as rs decreases. This
discontinuity may not be easy to directly observe experimen-
tally, since thermal and disorder effects will broaden it.

Impurity effects are usually introduced diagrammatically
into the RPA screening by including ladder impurity dia-
grams into the electron-hole bubble. We use a particle-
conserving expression,12 which captures the essential physics
of impurity scattering effects on the electron polarizability
�. We find that disorder strongly suppresses the plasmaron
peak, but not the quasiparticle peak. Thus the double-peak
structure in the spectral function becomes a very broadened
single peak. In the strongly disordered experimental
graphene samples, therefore, we have only a broadened qua-
siparticle peak.

We now comment on the experimental implications, the
theoretical approximations, and the connections to earlier
work. As mentioned before, the graphene ARPES measure-
ments have information on the electron spectral function,
which are, however, complicated by the presence of addi-
tional interaction effects such as electron-phonon
interactions.9 If these additional interaction effects can be
subtracted out �e.g., the 
200 meV structure4 presumably
arising from phonons in the experimental data�, then ARPES
measurements could indeed be compared with our calculated
spectral function shown in Fig. 1. We note that, in agreement
with the ARPES data, the quasiparticle spectral peak be-

-6 -4 -2 0 2 4 6
ω/E

0

0.2

0.4

0.6

F

|ImΣ|
(b)

ω
(k

,
)/

E
Σ

-2

-1

0

1

2
Re[Σ]

F

(a)

-4 -3 -2 -1 0 1 2 3
ω/E

0

1

2

3

|Im
Σ|

/E

(c)

1.0

k=1.5kF

0.7

0.3

F

F

0.1

FIG. 2. �Color online� Calculated graphene correlation self en-
ergy for k=1.5kF as a function of energy: �a� Re 
 and �b� �Im 
�.
�c� Plasmon contribution to the imaginary part of the self-energy for
several wave vectors. The Dirac point is at �=−EF.
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comes wider due to the plasmon contribution as the energy
approaches the Dirac point ��=−EF�. Including disorder ef-
fects, indeed there is good agreement between theory and
experiment. In experimental ARPES data, one broadened
spectral peak can be explained by the broadened double-peak
spectral features �the quasiparticle peak and the plasmaron
peak� due to disorder effects. The observed 200 meV struc-
ture in the ARPES arises from phonons, as has recently been
explained.9

Our theory is based on the leading order expansion of the
electron self-energy using the dynamically screened Cou-
lomb interaction �the so-called infinite bubble diagram ex-
pansion, with each bubble being the noninteracting electron-
hole polarizability10�, which we believe to be a quantitatively
accurate approximation for extrinsic graphene �i.e., at any
finite carrier density� by virtue of graphene having a reason-
ably small �and density independent� dimensionless interac-
tion parameter rs=e2 /��
0.8 �0.4� for graphene on a
SiO2 �SiC� substrate. In fact, the same self-energy approxi-
mation, often referred to in the literature as the RPA or GW
approximation, is known to work well in 3D alkali metals
where rs
3–6,7 and in 2D semiconductor system6,8 where
rs
1–10. The validity of the RPA and Fermi liquid theory
in extrinsic graphene has recently been discussed in the
literature.3

In discussing the connection between our work and earlier
work, we mention that, although there has been a great deal
of recent theoretical work on interaction effects in graphene,
much of it has focused on intrinsic graphene,13 and most of

the work on extrinsic graphene has focused on thermody-
namic properties.14 A recent calculation of the quasiparticle
spectral function in graphene due to electron-phonon inter-
action has appeared9 in the literature, and within the weak-
coupling theory �i.e., both electron-electron and electron-
phonon interactions are weak�, the total spectral function
should be a sum of these two spectral functions. We do note
that our calculated spectral function and self-energy in ex-
trinsic graphene are qualitatively rather similar to those in
ordinary parabolic band 2D carrier systems,6 thus pointing to
the fact that, in spite of its chiral Dirac-like band dispersion,
doped graphene in the presence of free carriers is qualita-
tively similar to doped 2D semiconductor systems.

In summary, we have provided a theoretical calculation
for the electron spectral function in 2D doped �i.e., extrinsic�
graphene, finding our theory to be in good qualitative agree-
ment with the available experimental data. We show that our
calculated electron-electron interaction effects when com-
bined with the corresponding electron-phonon and electron-
impurity interaction effects provide a quantitative description
for extrinsic graphene ARPES measurements. We believe
that our work plus the recent phonon work9 together now
provide a complete theoretical understanding of the quasipar-
ticle properties of extrinsic graphene with no remaining open
conceptual questions. We would also like to note that we
recently became aware of related work.15
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